167 resultados para Class I aldolase

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We obtained mice deficient for major histocompatibility complex (MHC) molecules encoded by the H-2K and H-2D genes. H-2 KbDb −/− mice express no detectable classical MHC class I-region associated (Ia) heavy chains, although β2-microglobulin and the nonclassical class Ib proteins examined are expressed normally. KbDb −/− mice have greatly reduced numbers of mature CD8+ T cells, indicating that selection of the vast majority (>90%) of CD8+ T cells cannot be compensated for by β2-microglobulin-associated molecules other than classical H-2K and D locus products. In accord with the greatly reduced number of CD8+ T cells, spleen cells from KbDb −/− mice do not generate cytotoxic responses in primary mixed-lymphocyte cultures against MHC-disparate (allogeneic) cells. However, in vivo priming of KbDb −/− mice with allogeneic cells resulted in strong CD8+ MHC class Ia-specific allogeneic responses. Thus, a minor population of functionally competent peripheral CD8+ T cells capable of strong cytotoxic activity arises in the complete absence of classical MHC class Ia molecules. KbDb −/− animals also have natural killer cells that retain their cytotoxic potential.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Distant relatives of major histocompatibility complex (MHC) class I molecules, human MICA and MICB, function as stress-induced antigens that are broadly recognized by intestinal epithelial γδ T cells. They may thus play a central role in the immune surveillance of damaged, infected, or otherwise stressed intestinal epithelial cells. However, the generality of this system in evolution and the mode of recognition of MICA and MICB are undefined. Analysis of cDNA sequences from various primate species defined translation products that are homologous to MICA and MICB. All of the MIC polypeptides have common characteristics, although they are extraordinarily diverse. The most notable alterations are several deletions and frequent amino acid substitutions in the putative α-helical regions of the α1α2 domains. However, the primate MIC molecules were expressed on the surfaces of normal and transfected cells. Moreover, despite their sharing of relatively few identical amino acids in potentially accessible regions of their α1α2 domains, they were recognized by diverse human intestinal epithelial γδ T cells that are restricted by MICA and MICB. Thus, MIC molecules represent a family of MHC proteins that are structurally diverse yet appear to be functionally conserved. The promiscuous mode of γδ T cell recognition of these antigens may be explained by their sharing of a single conserved interaction site.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nonobese diabetic (NOD) mice develop insulin-dependent diabetes mellitus due to autoimmune T lymphocyte-mediated destruction of pancreatic β cells. Although both major histocompatibility complex class I-restricted CD8+ and class II-restricted CD4+ T cell subsets are required, the specific role each subset plays in the pathogenic process is still unclear. Here we show that class I-dependent T cells are required for all but the terminal stages of autoimmune diabetes development. To characterize the diabetogenic CD8+ T cells responsible, we isolated and propagated in vitro CD8+ T cells from the earliest insulitic lesions of NOD mice. They were cytotoxic to NOD islet cells, restricted to H-2Kd, and showed a diverse T cell receptor β chain repertoire. In contrast, their α chain repertoire was more restricted, with a recurrent amino acid sequence motif in the complementarity-determining region 3 loop and a prevalence of Vα17 family members frequently joined to the Jα42 gene segment. These results suggest that a number of the CD8+ T cells participating in the initial phase of autoimmune β cell destruction recognize a common structural component of Kd/peptide complexes on pancreatic β cells, possibly a single peptide.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human T lymphocytes have been shown to express inhibitory natural killer cell receptors (NKR), which can down-regulate T cell antigen receptor-mediated T cell function, including cytolytic activity. In the present study, we demonstrate that CD3+NKR+ cells can be identified in HIV-infected patients. HIV-specific cytolytic activity was analyzed in five patients in whom autologous lymphoblastoid B cell lines could be derived as a source of autologous target cells. Phytohemagglutinin-activated T cell populations that had been cultured in interleukin 2 displayed HIV-specific cytotoxic T lymphocyte (CTL) activity against HIV env, gag, pol, and nef in 3 of 5 patients. Addition of anti-NKR mAb of IgM isotype could increase the specific CTL activity. Moreover, in one additional patient, HIV-specific CTL activity was undetectable; however, after addition of anti-NKR mAb such CTL activity appeared de novo. Similar results were obtained by analysis of CD3+NKR+ clones derived from two patients. These data provide direct evidence that CD3+NKR+ cells may include antigen (HIV)-specific CTLs and that mAb-mediated masking of inhibitory NKR may revert the down-regulation of CTL function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although cellular proteins degraded by proteasomes are the source of most antigenic peptides presented on major histocompatibility complex class I molecules, it is unknown whether the eight- to nine-residue peptides that fit in the binding groove of class I molecules are directly produced by proteasomes alone in vivo. If the eight-residue peptide SIINFEKL from chicken ovalbumin is extended by one or several residues at its C terminus and microinjected into cells or expressed from a minigene, it is processed and presented on major histocompatibility complex class I. However, processing and presentation are inhibited by proteasome inhibitors, such as lactacystin. In contrast, when SIINFEKL is extended by 2 to 25 residues at its N terminus, its presentation is not blocked by proteasome inhibitors. N-terminal processing also can occur when the extended peptide is cotranslationally inserted into the endoplasmic reticulum. Thus, two different proteolytic steps in the generation of an chicken ovalbumin-presented peptide can be distinguished. Cleavage by the proteasome defines the proper C terminus, whereas distinct peptidase(s) in the cytosol or endoplasmic reticulum may generate the appropriate N terminus from extended peptides.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A challenge for subunit vaccines whose goal is to elicit CD8+ cytotoxic T lymphocytes (CTLs) is to deliver the antigen to the cytosol of the living cell, where it can be processed for presentation by major histocompatibility complex (MHC) class I molecules. Several bacterial toxins have evolved to efficiently deliver catalytic protein moieties to the cytosol of eukaryotic cells. Anthrax lethal toxin consists of two distinct proteins that combine to form the active toxin. Protective antigen (PA) binds to cells and is instrumental in delivering lethal factor (LF) to the cell cytosol. To test whether the lethal factor protein could be exploited for delivery of exogenous proteins to the MHC class I processing pathway, we constructed a genetic fusion between the amino-terminal 254 aa of LF and the gp120 portion of the HIV-1 envelope protein. Cells treated with this fusion protein (LF254-gp120) in the presence of PA effectively processed gp120 and presented an epitope recognized by HIV-1 gp120 V3-specific CTL. In contrast, when cells were treated with the LF254-gp120 fusion protein and a mutant PA protein defective for translocation, the cells were not able to present the epitope and were not lysed by the specific CTL. The entry into the cytosol and dependence on the classical cytosolic MHC class I pathway were confirmed by showing that antigen presentation by PA + LF254-gp120 was blocked by the proteasome inhibitor lactacystin. These data demonstrate the ability of the LF amino-terminal fragment to deliver antigens to the MHC class I pathway and provide the basis for the development of novel T cell vaccines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Major histocompatibility complex (MHC) class II molecules displayed clustered patterns at the surfaces of T (HUT-102B2) and B (JY) lymphoma cells characterized by interreceptor distances in the micrometer range as detected by scanning force microscopy of immunogold-labeled antigens. Electron microscopy revealed that a fraction of the MHC class II molecules was also heteroclustered with MHC class I antigens at the same hierarchical level as described by the scanning force microscopy data, after specifically and sequentially labeling the antigens with 30- and 15-nm immunogold beads. On JY cells the estimated fraction of co-clustered HLA II was 0.61, whereas that of the HLA I was 0.24. Clusterization of the antigens was detected by the deviation of their spatial distribution from the Poissonian distribution representing the random case. Fluorescence resonance energy transfer measurements also confirmed partial co-clustering of the HLA class I and II molecules at another hierarchical level characterized by the 2- to 10-nm Förster distance range and providing fine details of the molecular organization of receptors. The larger-scale topological organization of the MHC class I and II antigens may reflect underlying membrane lipid domains and may fulfill significant functions in cell-to-cell contacts and signal transduction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Self-incompatibility in Brassica is controlled by a single multi-allelic locus (S locus), which contains at least two highly polymorphic genes expressed in the stigma: an S glycoprotein gene (SLG) and an S receptor kinase gene (SRK). The putative ligand-binding domain of SRK exhibits high homology to the secretory protein SLG, and it is believed that SLG and SRK form an active receptor kinase complex with a self-pollen ligand, which leads to the rejection of self-pollen. Here, we report 31 novel SLG sequences of Brassica oleracea and Brassica campestris. Sequence comparisons of a large number of SLG alleles and SLG-related genes revealed the following points. (i) The striking sequence similarity observed in an inter-specific comparison (95.6% identity between SLG14 of B. oleracea and SLG25 of B. campestris in deduced amino acid sequence) suggests that SLG diversification predates speciation. (ii) A perfect match of the sequences in hypervariable regions, which are thought to determine S specificity in an intra-specific comparison (SLG8 and SLG46 of B. campestris) and the observation that the hypervariable regions of SLG and SRK of the same S haplotype were not necessarily highly similar suggests that SLG and SRK bind different sites of the pollen ligand and that they together determine S specificity. (iii) Comparison of the hypervariable regions of SLG alleles suggests that intragenic recombination, together with point mutations, has contributed to the generation of the high level of sequence variation in SLG alleles. Models for the evolution of SLG/SRK are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The intensely studied MHC has become the paradigm for understanding the architectural evolution of vertebrate multigene families. The 4-Mb human MHC (also known as the HLA complex) encodes genes critically involved in the immune response, graft rejection, and disease susceptibility. Here we report the continuous 1,796,938-bp genomic sequence of the HLA class I region, linking genes between MICB and HLA-F. A total of 127 genes or potentially coding sequences were recognized within the analyzed sequence, establishing a high gene density of one per every 14.1 kb. The identification of 758 microsatellite provides tools for high-resolution mapping of HLA class I-associated disease genes. Most importantly, we establish that the repeated duplication and subsequent diversification of a minimal building block, MIC-HCGIX-3.8–1-P5-HCGIV-HLA class I-HCGII, engendered the present-day MHC. That the currently nonessential HLA-F and MICE genes have acted as progenitors to today’s immune-competent HLA-ABC and MICA/B genes provides experimental evidence for evolution by “birth and death,” which has general relevance to our understanding of the evolutionary forces driving vertebrate multigene families.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The puzzling linkage between genetic hemochromatosis and histocompatibility loci became even more so when the gene involved, HFE, was identified. Indeed, within the well defined, mainly peptide-binding, MHC class I family of molecules, HFE seems to perform an unusual yet essential function. As yet, our understanding of HFE function in iron homeostasis is only partial; an even more open question is its possible role in the immune system. To advance on both of these avenues, we report the deletion of HFE α1 and α2 putative ligand binding domains in vivo. HFE-deficient animals were analyzed for a comprehensive set of metabolic and immune parameters. Faithfully mimicking human hemochromatosis, mice homozygous for this deletion develop iron overload, characterized by a higher plasma iron content and a raised transferrin saturation as well as an elevated hepatic iron load. The primary defect could, indeed, be traced to an augmented duodenal iron absorption. In parallel, measurement of the gut mucosal iron content as well as iron regulatory proteins allows a more informed evaluation of various hypotheses regarding the precise role of HFE in iron homeostasis. Finally, an extensive phenotyping of primary and secondary lymphoid organs including the gut provides no compelling evidence for an obvious immune-linked function for HFE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studies in melanoma patients have revealed that self proteins can function as targets for tumor-reactive cytotoxic T lymphocytes (CTL). One group of self proteins MAGE, BAGE, and GAGE are normally only expressed in testis and placenta, whilst another group of CTL recognized proteins are melanocyte-specific differentiation antigens. In this study we have investigated whether CTL can be raised against a ubiquitously expressed self protein, mdm-2, which is frequently overexpressed in tumors. The observation that T-cell tolerance is self major histocompatibility complex-restricted was exploited to generate CTL specific for an mdm-2 derived peptide presented by nonself major histocompatibility complex class I molecules. Thus, the allo-restricted T-cell repertoire of H-2d mice was used to isolate CTL specific for the mdm100 peptide presented by allogeneic H-2Kb class I molecules. In vitro, these CTL discriminated between transformed and normal cells, killing specifically Kb-positive melanoma and lymphoma tumors but not Kb-expressing dendritic cells. In vivo, the CTL showed antitumor activity and delayed the growth of melanoma as well as lymphoma tumors in H-2b recipient mice. These experiments show that it is possible to circumvent T-cell tolerance to ubiquitously expressed self antigens, and to target CTL responses against tumors expressing elevated levels of structurally unaltered proteins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mice immunized with heat shock proteins (hsps) isolated from mouse tumor cells (donor cells) produce CD8 cytotoxic T lymphocytes (CTL) that recognize donor cell peptides in association with the major histocompatibility complex (MHC) class I proteins of the responding mouse. The CTL are induced apparently because peptides noncovalently associated with the isolated hsp molecules can enter the MHC class I antigen processing pathway of professional antigen-presenting cells. Using a recombinant heat shock fusion protein with a large fragment of ovalbumin covalently linked to mycobacterial hsp70, we show here that when the soluble fusion protein was injected without adjuvant into H-2b mice, CTL were produced that recognized an ovalbumin-derived peptide, SIINFEKL, in association with Kb. The peptide is known to arise from natural processing of ovalbumin in H-2b mouse cells, and CTL from the ovalbumin-hsp70-immunized mice and a highly effective CTL clone (4G3) raised against ovalbumin-expressing EL4 tumor cells (EG7-OVA) were equally effective in terms of the concentration of SIINFEKL required for half-maximal lysis in a CTL assay. The mice were also protected against lethal challenge with ovalbumin-expressing melanoma tumor cells. Because large protein fragments or whole proteins serving as fusion partners can be cleaved into short peptides in the MHC class I processing pathway, hsp fusion proteins of the type described here are promising candidates for vaccines aimed at eliciting CD8 CTL in populations of MHC-disparate individuals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The class I glutathione S-transferases (GSTs) of Anopheles gambiae are encoded by a complex gene family. We describe the genomic organization of three members of this family, which are sequentially arranged on the chromosome in divergent orientations. One of these genes, aggst1-2, is intronless and has been described. In contrast, the two A. gambiae GST genes (aggst1α and aggst1β) reported within are interrupted by introns. The gene aggst1α contains five coding exons that are alternatively spliced to produce four mature GST transcripts, each of which contains a common 5′ exon encoding the N termini of the GST protein spliced to one of four distinct 3′ exons encoding the carboxyl termini. All four of the alternative transcripts of aggst1α are expressed in A. gambiae larvae, pupae, and adults. We report on the involvement of alternative RNA splicing in generating multiple functional GST transcripts. A cDNA from the aggst1β gene was detected in adult mosquitoes, demonstrating that this GST gene is actively transcribed. The percentage similarity of the six cDNAs transcribed from the three GST genes range from 49.5% to 83.1% at the nucleotide level.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Homologues of the human major histocompatibility complex (MHC) HLA-A, -B, -E, -F, and -G loci are present in all the Catarrhini (Old World primates, apes, and humans), and some of their allelic lineages have survived several speciation events. Analysis of 26 MHC class I cDNAs from seven different genera of New World primates revealed that the Callitrichinae (tamarins and marmosets) are an exception to these rules of MHC stability. In gene trees of primate MHC class I genes, sequences from the Callitrichinae cluster in a genus-specific fashion, whereas in the other genera of New World primates, as in the Catarrhini, they cluster in a transgeneric way. The genus-specific clustering of the Callitrichinae cDNAs indicates that there is no orthology between MHC class I loci in genera of this phyletic group. Additionally, the Callitrichinae genera exhibit limited variability of their MHC class I genes, in contrast to the high variability displayed by all other primates. Each Callitrichinae genus, therefore, expresses its own set of MHC class I genes, suggesting that an unusually high rate of turnover of loci occurs in this subfamily. The limited variability of MHC class I genes in the Callitrichinae is likely the result of the recent origin of these loci.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Insulin receptor (IR) and class I major histocompatibility complex molecules associate with one another in cell membranes, but the functional consequences of this association are not defined. We found that IR and human class I molecules (HLA-I) associate in liposome membranes and that the affinity of IR for insulin and its tyrosine kinase activity increase as the HLA:IR ratio increases over the range 1:1 to 20:1. The same relationship between HLA:IR and IR function was found in a series of B-LCL cell lines. The association of HLA-I and IR depends upon the presence of free HLA heavy chains. All of the effects noted were reduced or abrogated if liposomes or cells were incubated with excess HLA-I light chain, β2-microglobulin. Increasing HLA:IR also enhanced phosphorylation of insulin receptor substrate-1 and the activation of phosphoinositide 3-kinase. HLA-I molecules themselves were phosphorylated on tyrosine and associated with phosphoinositide 3-kinase when B-LCL were stimulated with insulin.